Localization in General One Dimensional Random Systems, I. Jacobi Matrices

نویسندگان

  • Barry Simon
  • B. Simon
چکیده

We consider random discrete Schrόdinger operators in a strip with a potential Vω(n,a) (n a label in Z and α a finite label "across" the strip) and Vω an ergodic process. We prove that H0 -f Vω has only point spectrum with probability one under two assumptions: (1) The conditional distribution of {Kω(n,α)}n=ola l lα conditioned on {Kω}^01;allα has an absolutely continuous component with positive probability. (2) For a.e. E, no Lyaponov exponent is zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization in General One-Dimensional Random Systems

We discuss two ways of extending the recent ideas of localization from discrete Schrodinger operators (Jacobi matrices) to the continuum case. One case allows us to prove localization in the Goldshade, Molchanov, Pastur model for a larger class of functions than previously. The other method studies the model — A + V, where V is a random constant in each (hyper-) cube. We extend Wegner's result ...

متن کامل

Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations

‎‎‎‎‎‎‎‎‎‎‎‎‎This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product‎. ‎The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations‎ which appear in various fields of science such as physics and engineering. ‎The Operational matr...

متن کامل

Critical Lieb-thirring Bounds in Gaps and the Generalized Nevai Conjecture for Finite Gap Jacobi Matrices

We prove bounds of the form ∑ e∈I∩σd(H ) dist ( e, σe(H ) )1/2 ≤ L-norm of a perturbation, where I is a gap. Included are gaps in continuum one-dimensional periodic Schrödinger operators and finite gap Jacobi matrices, where we get a generalized Nevai conjecture about an L1-condition implying a Szegő condition. One key is a general new form of the Birman-Schwinger bound in gaps.

متن کامل

A Duality between Schrr Odinger Operators on Graphs and Certain Jacobi Matrices I Introduction

The known correspondence between the Kronig{Penney model and certain Jacobi matrices is extended to a wide class of Schrr odinger operators on graphs. Examples include rectangular lattices with and without a magnetic eld, or comb{shaped graphs leading to a Maryland{type model. Schrr odinger operators on L 2 (?) , where ? is a graph, were introduced into quantum mechanics long time ago 1]. In re...

متن کامل

The absolutely continuous spectrum of Jacobi matrices

I explore some consequences of a groundbreaking result of Breimesser and Pearson on the absolutely continuous spectrum of one-dimensional Schrödinger operators. These include an Oracle Theorem that predicts the potential and rather general results on the approach to certain limit potentials. In particular, we prove a Denisov-Rakhmanov type theorem for the general finite gap case. The main theme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1985